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Abstract. A quantum analogue of the classical first BBGKY equation, derived in a 
previous paper for the ground-state liquid surface, is extended to finite temperatures. This 
‘force-expectation’ equation expresses the vanishing of the spatial average value through 
the surface of the force experienced by a single particle. A companion ‘pressure-expec- 
tation’ equation, expressing the zero value of the averaged normal pressure, is also 
recognised. A test of the force-expectation equation for a boson liquid surface has proved 
successful, and suggests the value of the equation as a discriminant for approximations to 
the radial distribution function in the surface, rather than for the surface structure itself. 

1. Introduction 

In a previous paper (Buchan 1975, to be referred to as I), a proof was given for the 
existence of an exact ground-state quantum analogue of the classical first Bogoly- 
ubov-Born-Green-Kirkwood-Yvon (BBGKY) equation. This latter equation may be 
written: 

and is an expression of the static mechanical equilibrium of a plane fluid interface, in 
the normal ( z )  direction. In contrast, our quantum counterpart is the same equation 
in integral form, i.e. 

I d r  G(r )  = 0, (2) 

where G ( z )  is the analogue of (l), and is defined below. Equatiun (2) can be 
interpreted (see I) as a ‘force expectation-value’ equation. That is, it states that the 
equivalence to zero of the expectation value of the force per particle, spatially 
averaged through the interface, is the new equilibrium condition. 

In the present paper two new developments are reported. First the extension of 
the force-expectation equation to general (excited) states of the liquid-vapour system 
is given. The existence of a collateral pair of equations for the interface is then 
established. Their physical significances are discussed in the conclusions. Secondly we 
report in detail a successful test of the force-expectation equation for the ground state 
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surface of a boson liquid. 
the surface energy of an 
the surface tension y! of 

This test was carried out during a variational calculation of 
artificial mass-3 boson liquid, required in the evaluation of 
3He (Buchan and Clark 1977b). 

2. Extension of the force-expectation equation 

In I the validity of the force-expectation equation ( (2)  above) was demonstrated only 
for the ground state $&I, . . . , r ~ )  of an N-particle system, with the Hamiltonian 

where U ( N )  = XKj=l  V(rij) contains only internal two-body interactions. The 
geometry assumed for the system was that of a simple cuboidal enclosure, thickness 2a 
in the z direction, with two free surfaces placed symmetrically about the mid+, y )  
plane. 

The aim here is to show the validity of equation ( 2 )  applied to general, excited 
states $,,(rl, . . . , r N )  of the system, for which the pressure P,, # 0 and a vapour of finite 
density exists. In order to avoid repetition of the proof given in I, we quote the 
following result (equation (16)) given there: 

2 ~ , a  = J-: P,, dz 

where 

Here n‘2’(z1, r 1 2 )  is the usual pair distribution function, f z ( z l )  is the z component of 
the kinetic energy density, and f(zl)/n(zl) may be interpreted as the net force on a 
particle at z = z in the z direction, due to the interatomic potential V(r). In order to 
simplify notation subscripts ‘n’ are omitted from functional quantities (e.g. tz (z))  in 
the text. 

Now partial integration of ( 4 )  gives 

dz Z G ( ~ ) = ~ U ~ , ( U ) - ~ P , , U  I-: 
where t , (a)  is the bulk (isotropic) value of ( 5 )  in the vapour phase, and z = 0 locates 
the mid-plane of our slab-symmetrical system. Since zG(z )  is clearly a symmetric 
function, we derive for the upper half-slab: 

dz zG(z )=  (2t , (u)-  P,,)u. (8) 

Using arguments similar to those given in I, G ( z )  may be written as a function G(t)  
of a new variable t = z -c, where t = 0 is fixed with respect to the inhomogeneous 
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surface layers. We now hold 'a' fixed, but macroscopically large, so that the right- 
hand side of equation (8) is constant. By allowing the plane z = c of the surface to 
vary, the arguments given in the appendix of I may again be applied. (This follows 
since the value of the function h ( c )  = dz zG(z - c) given there need only, in general, 
be a constant for the proof to remain valid.) Hence we have for a free surface on bulk 
fluid 

where integration extends across the inhomogeneous layers. 

states I,+,, of the system. This is written 
In I (equation (23)), the existence of another identity was established for general 

dzl(P, - 2t2(r1)+F(z1)j = 0 (10) 

where 

Clearly at any finite temperature T, both (9) and (10) above apply with their integrand 
terms replaced by ensemble averages. Thus in the identities (9) and (10) we recognise 
a pair of equations valid for any state of the free liquid-vapour interface. The physical 
interpretation of these equations is discussed in the conclusions. 

3. Testing the force-expectation equation 

In a separate paper (Buchan and Clark 1977b) results have been reported for a 
calculation of the ground-state surface energy y:(O) of 3He. A prerequisite to the 
evaluation of y; was a variational theory for the ground-state surface of an artificial 
mass-3 boson ( M ~ B )  liquid. A description of the bulk M ~ B  liquid may be found in 
Buchan and Clark (1977a); that of its free surface in Buchan and Clark (1977b). 
Briefly the results are as follows. 

The bulk liquid was found to have a variational minimum energy €3 = -3.82 K at a 
density nb = 0.0164 A-3, using a Jastrow product wavefunction. A Lennard-Jones 
potential was employed with modified strength and range parameters. For the free 
surface y? was minimised with respect to the parameter p in a simple Fermi profile 
n(z)= nb[l +exp(pz)]-'; and the parameters pl, pz,  y in a generalised Fermi profile: 

The simple Fermi profile gave y? = 0.195 erg cm-2 at p = 0.7 A-', while for (12) we 
obtained y: = 0.191 erg cm-', with p1 = 0-9 A-', p2 = 0.48 A-', y = 0.39 A-'. 

Simultaneous with the computation of 7; itself, the opportunity was taken to test 
equation (9). Rather than evaluate d(2rz (t ))/dz through the interface, which would 
necessitate computation of complicated third-order derivatives, direct integration can 
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be performed on the first term of equation (9), casting it in the form 

“ d  J-, dz f ( z )  = J dz Z(2tz(z))  = -2fb. 
00 

--OD 

Here tb is a component of the bulk liquid kinetic energy density, and can easily be 
shown to satisfy tb = f n b (  T ) / N ,  where ( T ) / N  is the expectation value of the kinetic 
energy per particle in bulk liquid, and has the value ( T ) / N  = 10.34 K I N  in the 
present calculation (Buchan and Clark 1977a). Hence our equation predicts 

JD 

dz f(z)= -0.1 13 1 K A-3. 
1-m 

(14) 

Integration of the left-hand side of (14) was performed numerically, using equa- 
tion (6) and the ansafz 

n%, r2) = n(rl)n(rZ)gb(rl2; t(n(zl)+ n (zd) (15) 

i.e. the radial distribution function g ( r ;  n) is that appropriate to the mean of the 
densities at rl and rz. In practice gb(r) was computed for a mesh of densities, spacing 
nb/20, through the interface, using the (Y equation of Chang and Cohen (1973), with a 
constant value of a. Further details may be found in Buchan (1976). 

The result obtained for the simple Fermi profile is 

1 dzf’(z)= -0.1175 Ki4-3  (16) 

which differs from (14) by less than 4%. While this agreement is good, a more striking 
feature of our computations was that (16) remained constant (to within -0.002°/~) as 
the profile shape was varied. Thus moving from the variational minimum of the 
simple Fermi to that of the generalised Fermi profile, a drop of only 0.OO7O/ 0 was 
observed. 

Simultaneously, however, significant changes in f(z ) itself occurred. These effects 
are illustrated in figure 1, which shows n’(z) = n (z)/nb and f(z) for the minimum of the 

x10-3 -2i \ I  
\ I  
\ /  

Figure 1. Various functions through the M3B surface with generalised Fermi profile. 
Upper and lower full curves: n’(z) and f(z), respectively, at surface energy minimum. 
Broken curve: f(z), with 81 increased to 1.5 A-’. 
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generalised Fermi profile. Also shown is f ( z )  for the same profile, but with P I  
displaced from 0.9 .&-I to 1.5 A-*. For this displacement (16) remained true to within 
about 0.002%, which is certainly better than any error in our calculations resulting 
from solution of the a equation for g ( r ;  n ) .  But at the same time the minimum in f ( z )  
dropped from -0.0167 K A-4 to -0,0215 K A-4, i.e. by about 30%. 

The conclusion then is that as the profile is varied, f(z) restructures itself 
significantly in the surface in order to keep (16) fixed. This result was not anticipated, 
since we expected the difference between the left- and right-hand sides of (14) to be 
zero (or very small) only in the region of the surface energy minimum. Thus our 
equation is not, apparently, useful as an alternative method of locating values for 
structural parameters (e.g. P )  of the surface. However, the degree of agreement 
between (14) and (16) should serve as an overall indication of the accuracy of the 
distribution functions g(r l ,  r2)  used through the surface. Thus only (16) suffers from 
errors in the latter. For example, the difference of only around 4% between (14) and 
(16) above suggests the satisfactory nature of the ansarz (15) when combined with 
g ( r ,  n )  derived from solution of the a equation at all densities n through the interface. 

4. Conclusions 

In I a physical interpretation of equation (2) above was given in terms of the 
expectation value of a force per particle. This equation has now been shown to apply 
IO any (finite temperature) state of a liquid-vapour interface, thus completing the 
quantum analogy of equation (1). Simultaneous with equation (2), however, we 
recognise the validity of a companion identity, namely equation (10) above. 

It is possible to place a similar interpretation on equation (lo), but expressed in 
terms of the components of pressure, rather than the components of force exerted on 
an individual particle. Thus 2rZ(z)  is analogous to n ( z )  kT, the kinetic component of 
the pressure at a point z ;  and F ( z )  is identical with the interparticle potential term in 
the classical pressure tensor (see Kirkwood and Buff 1949, equation (10)). In other 
words the integrand of (10) may be interpreted as a quantum underpressure in the 
normal direction. Then whereas in the classical case the underpressure vanishes 
everywhere, our equation implies that in the quantum case only its expectation value 
vanishes. 

A test of the force-expectation equation (equation (9)) has shown that its value is 
invariant under quite large changes in surface structure, and hence that the equation is 
not a useful determinant of surface profile shape. It does nevertheless serve as an 
overall indicator of the accuracy of proposed approximations for g(r1, r 2 )  through the 
interface, and could be used to discriminate between different approximation 
schemes. It would be interesting to conduct a similar trial on the ‘pressure-expectation 
equation’ (equation (lo)), though this would necessitate direct evaluation of rz ( z )  
through the surface. With the Jastrow approximation for the boson surface (e.g. 
Buchan and Clark 1977b) this would involve the three-particle distribution function 
( g ( r l ,  r2, r3)) ,  thus implicating further approximations in the calculation. 
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